
Int. J. Muhiphase Flow Vol. 17, No. 4, pp. 425-437, 1991 0301-9322/91 $3.00 + 0.00 
Printed in Great Britain. All rights reserved Copyright © 1991 Pergamon Press/Elsevier 

B U B B L E  G R O W T H  O N  A S O L I D  W A L L  I N  A 

R A P I D L Y - D E P R E S S U R I Z I N G  L I Q U I D  P O O L  

Z. WANGt and S. G. BANKOFF~ 
Chemical Engineering Department, Northwestern University, Evanston, IL 60208-3120, U.S.A. 

(Received 10 July 1990; in revised form 1 January 1991) 

A~traet--Experimental measurements were made of bubbles growing on a well-wetted stainless-steel 
surface in rapidly-depressurized distilled water. The Jones & Zuber variable-pressure solution for the 
bubble radius was modified by including the contribution of microlayer evaporation from the base of the 
bubble, as well as from the curved surface. Despite the pressure disturbances caused by acoustic reflections 
in the first few milliseconds, very good agreement is obtained with limited data. 
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I N T R O D U C T I O N  

The growth rate of  a bubble on a solid wall in a rapidly-depressurizing liquid pool is of  interest 
for many two-phase flow and heat transfer applications. For  example, in a postulated loss-of- 
coolant accident in a pressurized-water reactor, or the rupture of  a pressure-relief diaphragm in 
a runaway chemical reactor, the liquid, if initially subcooled, will depressurize to a saturated 
condition, and then begin to form vapor. The two-phase pool level, and thus eventually the 
discharge flow rate, are affected by the nucleation and growth rates of  bubbles in the varying 
pressure field. In this paper we consider only bubble growth rates. A companion paper will report 
on bubble nucleation rates (Wang & Bankoff 1991). For  rapid depressurization, with engineering 
surfaces in clean water, nearly all the initial bubbles are nucleated on the solid walls, rather than 
in the bulk liquid. In the first few milliseconds after a large vessel or diaphragm rupture, the 
pressure drops rapidly. Bubbles form on the walls, but have no time to coalesce, or rise due to 
buoyancy. The degree of non-equilibrium between the vapor  in the bubbles and the bulk liquid 
determines the bubble growth rates. In the very earliest stage, growth is dominated by surface 
tension, but this effect becomes negligible before the bubble becomes visible to the naked eye. 
Nevertheless, this is a very slow growth period, resulting in a time delay between nucleation and 
significant bubble growth. The next stage is momentum-controlled,  since little cooling of  the liquid 
at the bubble wall has as yet taken place. Finally, the diffusion of heat through the thermal 
boundary around the bubble controls the bubble growth. For constant external pressure, it is then 
found that the bubble radius increases as the square root of  time (Birkhoff et  al. 1958; Scriven 1959; 
Bankoff 1963, 1966). 

Bubble growth on solid walls under rapid depressurization presents additional complications, 
since the vapor  density changes with time. Furthermore,  a very thin liquid microlayer generally 
exists (if the wall is well-wetted) between the bubble and the wall. The evaporation of  this 
microlayer contributes to the bubble growth. The work reported in this paper consists of  an 
experimental and analytical approach to the problem. Bubble growth rates on a non-heated, 
vertical stainless-steel surface, under rapid depressurization, are measured by high-speed motion 
photography.  A bubble growth equation, based on the Jones & Zuber (1978) solution for variable 
pressure, but taking into account the contact with the solid surface, is developed. The results should 
be useful in matching the early level swell period to the later quasi-equilibrium period, when the 
vapor and liquid temperatures are nearly equal, and the relative velocity of  the vapor  and liquid 
can be estimated by drift-flux correlations. These results may also be applicable to flashing 
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flow in converging nozzles. A liquid particle experiences rapid depressurization as it passes 
through the converging section. At some point nucleation and bubble growth begin, and 
temperature non-equilibrium between the liquid and vapor persists for a considerable distance 
downstream. 

L I T E R A T U R E  REVIEW 

The problem of vapor bubble growth under constant external pressure is non-linear and cannot 
be solved exactly, except under simplifying assumptions which may be inherently contradictory. 
Thus, a similarity solution was discovered by Birkhoff et al. (1958), and also Scriven (1959), with 
the assumptions of (1) zero initial bubble radius and (2) no liquid inertia or surface tension. Hence 
the vapor is always at the saturation temperature at the given external pressure. The surface-ten- 
sion-controlled and liquid-momentum-controlled phases of bubble growth are thus bypassed, only 
the late diffusion-controlled stage being considered. 

Plesset & Zwick (1952, 1954) and Zwick & Plesset (1955) solved the problem of bubble growth 
in a superheated liquid from an initial slight displacement from equilibrium, all the way to late 
diffusion-controlled growth, by matched asymptotic expansions. The late-stage expansion parameter 
was the ratio of the volume of the thermal boundary layer around the bubble to the volume of 
the bubble. In order to deal with the moving boundary, the radial coordinate in the convective heat 
equation in the liquid was replaced by a Lagrangian coordinate. Since the liquid velocity at any 
point is related to the bubble wall velocity by the continuity equation, the solution for the 
temperature profile through the thermal boundary layer at the bubble wall, and hence for the 
bubble volume at any instant of time, immediately becomes implicit. Further, in order to allow 
an analytical solution of the zeroth-order heat flow problem, a time-like variable was introduced, 
which contained the bubble radius, and further ensured an indirect, parametric solution. For the 
late-stage growth, the zeroth-order error was bounded by solving the first-order problem, and 
bounding the resulting integral. To lowest order, the bubble radius increases as the square root 
of time, and the surface heat flux varies inversely as the square root of time. The solution is thus 
of the same form as the solution for a plane slab subjected to a step-change in surface temperature, 
except for a proportionality factor. This factor [called a sphericity factor, Ks, by Forster & Zuber 
(1954)] accounts for the stretching and thinning of the thermal boundary layer as the bubble surface 
area increases. For the Plesset-Zwick (P-Z) solution compared to the plane-slab solution, Ks = xf3. 
Since the plane-slab solution for the surface flux, when a time-varying surface temperature is 
imposed, is well-known, this suggests that a good approximation to the bubble growth problem 
may be obtained by multiplying the corresponding plane-slab solution by the constant-surface-tem- 
perature sphericity factor. This was the approach adopted by Jones & Zuber (1978) for a bubble 
in a infinite sea of liquid in a decreasing-pressure field, and followed herein for a bubble attached 
to a solid with a non-zero contact angle, likewise in a decreasing-pressure field. It should be 
emphasized, however, that there is no rigorous basis for this approach. These authors used a 
sphericity factor Ks = zc/2, derived by Forster & Zuber (1954) (F-Z) for the late-time growth of 
a bubble in an isothermal, constant-pressure liquid. However, the F-Z solution avoided the 
inherent non-linearity of this problem by modeling the growing bubble as a spherical heat 
sink, expanding through a stationary liquid at a rate dictated by mass and energy conservation. 
The stretching and thinning of the thermal boundary layer owing to convection is thus not 
present, leading to a growth rate about 10% slower than the P-Z solution. In this work we 
use the P-Z value, which also gives a better fit to our bubble growth data. Birkhoff et al. 

(1958) also obtain the value Ks = x/~ as a limiting case of their similarity solution for fast-growing 
bubbles. 

The P-Z solution was extended by Bankoff (1963) to third order, taking into account lower- 
order corrections resulting from simultaneously expanding the heat and liquid momentum 
equation. Skinner & Bankoff (1964, 1965) extended the P-Z procedure to spherically-symmetric 
initial temperature distributions in the liquid, and finally, to arbitrary initial temperature 
distributions. 

Mikic et al. (1970) found a useful similarity solution for the dimensionless bubble radius, R*, 
as a function of dimensionles time, t*, by interpolating between the limiting cases of pure 
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momentum control and pure heat-conduction control of bubble growth at constant external 
pressure with uniform initial liquid temperature. This can be verified from their equation 

R + = ~[(t + + 1) ' 5 -  t + ' 5 -  1] [1] 

for small and large values of  t +. The analysis was also extended to bubble growth on a wall at 
constant contact angle. Unfortunately, there seems to be no simple way of  extending their solutions 
to time-varying external pressures. 

Theofanous et al. (1969) obtained a numerical solution for bubble growth in a time-dependent 
pressure field, assuming a quadratic temperature distribution across the thermal boundary layer. 
The effects of  liquid viscosity, liquid inertia, surface tension, interracial non-equilibrium and 
varying vapor density could all be included. Inoue & Aoki (1975), Cha & Henry (1981) and Toda 
& Kitamura (1983) examined the same problem by introducing a coordinate transformation which 
immobilized the moving boundary. Inoue & Aoki (1975) obtained the interfacial temperature in 
terms of  a convolution integral involving the interfacial heat flux, and also presented an asymptotic 
solution for the bubble radius in a slowly-varying pressure field by an extension of  the P-Z solution. 
Toda & Kitamura (1983) employed a thin thermal layer approximation, together with a similarity 
solution. The agreement between their predictions and their experimental data, obtained by a 
pulsed laser to form a bubble nucleus, was good when the sphericity factor Ks = re/2 was included. 

Jones & Zuber (1978) solved the bubble growth problem in a variable pressure field by an 
extension of the F - Z  method (1954), using the same value of Ks. For  a linear decay with time of  
the bubble wall temperature, the solution obtained was 

R ( t * )  = _Pv°_l/3R o 1 + - -  [JaTt*°s+~Japt*l"]  , [2] 
\ O r ~  x /~  

where t* is a dimensionless time, given by ~t/R2o, Jay and Jap are Jakob numbers for initial 
superheat and for pressure effects, and Pv0 and R0 are the vapor density and bubble radius at the 
beginning of the thermally-controlled growth period. 

Zwick (1960) solved the problem of the diffusion-controlled growth of a vapor bubble in a 
constant-pressure liquid with internal heat sources. This problem is equivalent to the decreasing 
pressure problem, with the exception that the vapor density remains constant. Zwick assumed a 
linear increase of  liquid temperature with time. In this case the bubble radius grows initially as t i/z, 
but for long times as t 3/2. 

Tsung-Chang & Bankoff (1986) modified the Zwick solution to account for the system 
depressurization, and the consequent vapor density variation. Assuming that the relative rate of  
change of  the vapor density is much smaller than that of  bubble volume, a solution was obtained 
for the bubble radius vs time in parametric form. Numerical solutions were obtained, which were 
compared with the predictions of previous investigations. Burelbach & Bankoff (1987) performed 
a direct numerical integration of the integral equation expressing the energy balance on the bubble 
in Lagrangian coordinates, which agreed closely with the Tsung-Chang & Bankoff (1986) solution. 

ANALYSIS  

We consider the problem of a single vapor bubble growing on a vertical wall in an isothermal 
liquid pool subjected to sudden depressurization. Since the sound velocity in the vapor is large 
compared with the bubble wall velocity, the pressure within the vapor follows instantaneously its 
value at the bubble wall, which is given by the equilibrium vapor pressure of the liquid. 
Furthermore, the liquid can be taken to be incompressible. We assume also that temperature 
gradients within the bubble can be neglected, although for very fast-growing bubbles this 
assumption can lead to appreciable errors. For  a discussion of these assumptions, see Plesset & 
Zwick (1954). 

Significant complications are introduced by the attachment of the bubble to the solid wall. We 
assume that the bubble growing on the solid surface is always a truncated sphere, with contact 
angle, fl, and that the center of  the sphere is at rest with respect to the bulk liquid (figures la and 
lb). These assumptions, which are made in order to make the problem tractable, are only 
approximately true. This is because the presence of the solid surface destroys the radial symmetry 
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of  the liquid flow around the bubble. In particular, the contact angle depends upon the speed of 
the contact line close to the solid wall; there is a velocity boundary layer; there is a stagnation-point 
flow around the bubble owing to the translation of the bubble center toward the bulk liquid, and 
this, in turn, results in slight flattening of the bubble; and buoyancy may cause slight upwards 
translation of  the bubble, although this was not observed in the time scale of  these experiments. 

In addition, it has been shown that a thin liquid microlayer exists at the base of  a vapor bubble 
growing on a heated solid surface (Cooper & Lloyd 1969). It seems likely that this is true also for 
a bubble growing on an unheated wall (Katto & Shoji 1970). The estimation of the evaporative 
heat flux from the microlayer requires an integration over elements of  surface area which have 
different times of  appearance (Tsung-Chang & Bankoff 1989). The thickness of  the microlayer, 6v~, 
as a function of radial distance, r, was estimated by Cooper (1969) to be of  the order of  (vtb) ~/2, 
where v is the liquid kinematic viscosity, and tb(r) is the time when the bubble base radius was r. 

Figure la. Bubble shape and size in experiment 3010 (Table I) at 2.0, 1.2, 1.4 and 2.0 ms after the bubble 
became visible. Scale: 0.0376 to 1. 
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Figure lb. Same bubble as in figure la, except at times 2.8, 3.8, 4.2 and 4.6 ms after the bubble became visible. 

Once the surface element is exposed, evaporation begins and a thermal boundary layer, whose 
thickness, 6th(r), is of  the order of [~(t - t b ) ]  ~/2, begins to penetrate into the liquid. For 6v~s>>6th, 
the liquid layer can be assumed to be locally semi-infinite. For  t ~< 2t b, it is seen that 6vis/6th <~ Pr-~/2, 
where Pr is the Prandtl number. Since 0 ~< t b ~ t ~< tf, where tf is the time of  bubble observation, 
it is clear that this assumption is not valid for all t and r. Nevertheless, we follow Plesset & 
Prosperetti (1977) in assuming that the microlayer thickness is uniform at each time, and that the 
microlayer is exposed to the vapor for the same length of time as the curved portion of  the bubble. 
Thus, the evaporative flux from the curved portion of  the bubble is that from the flat microlayer, 
multiplied by the sphericity factor, K~. Further discussion on microlayer heat transfer is given by 
Tsung-Chang & Bankoff (1989). 

With these assumptions, the Rayleigh-Plesset equation in the liquid domain becomes 
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where 0 is the polar  angle, taking the z-axis normal  to the solid wall, and fl is the apparen t  contact  
angle, assumed to be constant .  The inertial  terms on the 1.h.s. are generally negligible by the time 
the bubble  becomes visible to the naked eye, so that  the bubble  growth thereafter is thermally 
controlled. A criterion for this assumpt ion  to be valid is e << 1, where 

Po -- Pf ( tf ~ 2 

Here Pf, tf and  Rr are the final pressure, time after the ini t ia t ion of bubble  growth and  the radius 
R (tr), respectively. F r o m  tables 1 and 2 it is found that  ~ is of  the order of  10 -I for these bubbles.  
The neglect of  the inertial  terms is thus justified in this case, but  it is seen that  it might  be necessary 
to consider the coupled m o m e n t u m  and heat transfer problem for rapid depressurization from 
much higher initial pressures. With  these assumptions,  the energy balance on the bubble  separated 

from the solid by a very thin liquid layer is 

d 
~tt(VpvhfG) = Ab~b b --}- Aeq~c, [4] 

where ~)b and qb c are the heat fluxes through the base and  curved surface of the bubble,  respectively. 

The bubble  volume is 

V(t) = 3R3( t ) [2  + cos/~(2 + sin 2/~)], 

and the base area and curved surface area are, respectively, 

Ab = 7r [R (t) sin/~]2, 

and  

Ac = 2~zRZ(t)(1 + cos/3). 

In  accordance with the previous discussion, we take 

q~c = Ks~bb, Ks = x/~ (Plesset & Zwick 1954). 

[5] 

[6] 

[7] 

[8] 

Table 1. Experimental data for bubble 3010; Tr0 = 403 K 

Frame 
No. t (ms) Po~(bar) R (mm) D (mm) H(mm) /3 (deg) 

1 0.20 1.72 0.58 1.11 0.74 73 
2 0.40 1.70 1.03 1.95 1.28 74 
3 0.60 1.67 1.30 2.49 1.67 73 
4 0.80 1.65 1.57 3.0 1.99 74 
5 1.00 1.63 1.70 3.23 2.24 71 
6 1.20 1.60 1.88 3.55 2.49 71 
7 1.40 1.58 2.00 3.78 2.67 70 
8 1.60 1.56 2.10 3.98 2.77 71 
9 1.80 1.54 2.17 4.1 2.88 71 

10 2.00 1.52 2.30 4.33 3.06 70 
11 2.20 1.50 2.42 4.55 3.23 70 
12 2.40 1.48 2.54 4.76 3.41 70 
13 2.60 1.46 2.66 5.01 3.54 70 
14 2.80 1.45 2.79 5.27 3.7 71 
15 3.00 1.43 2.89 5.43 3.91 69 
16 3.20 1.41 2.95 5.57 3.93 70 
17 3.40 1.39 3.01 5.68 4.02 70 
18 3.60 1.38 3.13 5.90 4.18 70 
19 3.80 1.37 3.22 6.09 4.26 71 
20 4.00 1.36 3.28 6.2 4.36 70 
21 4.20 1.36 3.38 6.4 4.48 71 
22 4.40 1.36 3.48 6.57 4.64 70 
23 4.60 1.36 3.55 6.68 4.73 70 
24 4.80 1.36 3.64 6.84 4.87 70 
25 5.00 1.35 3.7l 6.98 4.97 70 



BUBBLE GROWTH ON WALLS UNDER RAPID DEPRESSURIZATION 431 

Table 2. Experimental data for bubble 3101; Tf0 = 402 K 

Frame 
No. t (ms) P~(bar )  R (mm) D (mm) H ( m m )  fl (deg) 

1 0.20 1.74 0.30 0.5 0.46 57 
2 0.40 1.71 0.39 0.64 0.62 54 
3 0.60 1.70 0.51 0.90 0.77 61 
4 0.80 1.71 0.56 0.99 0.81 63 
5 1.00 1.73 0.67 1.20 0.95 65 
6 1.20 1.76 0.69 1.25 1.0 64 
7 1.40 1.78 0.77 1.39 1.09 65 
8 1.60 1.80 0.79 1.43 1.11 66 
9 1.80 1.78 0.86 1.57 1.2 66 

10 2.00 1.76 0.92 1.67 1.30 65 
11 2.20 1.73 1.01 1.85 1.44 65 
12 2.40 1.67 1.04 1.90 1.48 65 
13 2.60 1.61 1.17 2.13 1.68 65 
14 2.80 1.55 1.26 2.31 1.76 67 
15 3.00 1.49 1.35 2.45 1.90 66 
16 3.20 1.43 1.45 2.69 1.99 68 
17 3.40 1.38 1.55 2.87 2.13 68 
18 3.60 1.33 1.65 3.10 2.22 70 
19 3.80 1.39 1.79 3.37 2.41 70 
20 4.00 1.25 1.94 3.55 2.71 69 
21 4.20 1.22 2.00 3.74 2.73 69 
22 4.40 1.22 2.01 3.74 2.73 69 

From [6]-[8], the ratio of the heat flows from the base and curved portions of the bubble is given by 

Abe) b sin 2 fl 
= - -  - . [8a] 

~0, Ac¢c 2x/3(1 + cos fl) 

Taking/3 = 70 °, ¢Pl = 0.19, so that microlayer evaporation contributes a significant portion of the 
total heat transfer. Similarly, one can estimate the ratio of  the heat transfer to the wall-attached 
bubble to that to an isolated bubble: 

sin 2/3 + 2x/~(l + cos fl) 
q~2 - 4x//~ [8b] 

For  fl = 70 °, q~z = 0.798, so that the wall-attached bubble has a significantly slower vaporization 
rate. To obtain R(t) ,  one may use the parametric solution for the bubble radius given by 
Tsung-Chang & Bankoff (1986), or the modified plane-slab solution of Jones & Zuber (1978). The 
former solution has the advantage of not requiring arbitrary assumptions about the correction for 
convective thinning of the thermal boundary layer around the bubble, but is limited at present to 
a linear change in bubble wall temperature with time, which was not found in the present work. 
The modified procedure of Jones & Zuber (1978) was therefore adopted. 

Even though the water layer beneath the bubble base is quite thin, it is acceptable to consider 
it to be a semi-infinite slab for the heat transfer times of interest (Plesset & Prosperetti 1977). 

The surface heat flux of  a semi-infinite slab, initially at a temperature To, which is subjected to 
a varying surface temperature T(0, t ) =  T 0 - g ( t ) ,  is given by Carslaw & Jaeger (1965): 

k F g ( 0 ) +  ' d r l .  [9] fo g'(r) 
Substituting [5]-[9] into [4] and integrating, one obtains 

] R Ro + h--~o jo Cb(O d~ , [101 

where the constant factor, A = A (fl, Ks), is 

2Ks(l + cos fl) + sin 2 fl 
A = 2 + c o s f l ( 2 + s i n 2 f l  ) [11] 

From tables 1 and 2, it is seen that the apparent contact angle, fl, is nearly constant over the time 
interval of  interest, so that it is acceptable to take A out of the integral. We take the time, t = 0, 
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in [9] to be the time when significant bubble growth begins. Thus, g (0) is the initial superheat for 
bubble growth, and g'(t) > 0 during the depressurization. The actual vapor densities, as calculated 
from the pressure measurements, were used in [10]. Even for this relatively small range of pressures, 
it is not acceptable to ignore this density correction inside the integral (Jones & Zuber 1978). A 
ninth-order polynomial was needed to fit the temperature-time curve calculated from the 
pressure-time data, since acoustic reflections caused large variations in pressure during the time 
interval of interest. 

EXPERIMENT 

The experimental vessel (figure 2) consisted of  a vertical glass tube above which is mounted a 
measurement section. This was a 25.4 mm i.d. × 100 mm long stainless-steel tube, on which a 
sheathed thermocouple and two charge-type pressure transducers were mounted. Above the 
measurement section was a 3.8 cm i.d. stainless-steel cross, with a flange welded on each end. A 
pneumatic cylinder connected to a stainless-steel cutter was mounted horizontally on one flange. 
Depressurization was realized by nearly-instantaneous rupture of the 0.127 mm thick, 38 mm dia 
aluminum diaphragm, mounted on the flange opposite the cutter blade. A satisfactory diaphragm 
burst was almost always achieved, as shown by the rupture of the diaphragm into four 
nearly-identical quadrants. The top flange was blocked by a blind flange with its inner surface cut 
into a conical shape of 18 ° from the horizontal, so that the shock wave was not directly reflected 
back into the test vessel. 

The test section was a 25.4 mm i.d. × 250 mm long glass tube, with a 3 mm thick wall and a 
hemispherical bottom. In order to avoid optical distortion in the measurement of  the bubble 
dimensions, the glass tube had a 100 mm long flat surface. A silicone oil bath with magnetic stirrer 
was used to heat the test section. 

Exhaust t o  
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Pneumatic 
cylinder 

r e  
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Figure 2. Diagrammatic sketch of the experimental apparatus. 
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A Photek-IV camera was used to take pictures of  either the growing bubbles or the liquid level, 
at framing rates of  5000/s. A 1 kW high-intensity projection lamp was installed at the rear of  the 
test section about  0.2 m away from the tube center. 100-ft rolls of  Kodak  Tri-X reversal 
black-and-white film were used for the experiment, and later developed using a Kramer  Mark  I 
processor in the laboratory.  

After the film ran through a preset 40-ft length and was accelerated to the desired speed, an event 
control signal was generated by the camera, which simultaneously triggered the solenoid valve, a 
signal generator and the computer  to begin data acquisition. The pulse from the signal generator 
activated an internal LED in the camera, producing an initialization mark  on one side of  the film. 
The camera itself also produced a 1 kHz timing mark on the other side of  the film, which enabled 
the time for each frame of  film and the corresponding pressure, to be determined. 

The transient system pressure was measured by two charge-type, high temperature, high-sensi- 
tivity pressure transducers with a response time of 2 #s and an estimated error of  + 103 Pa. To 
measure the shock wave speed in the gas, the two transducers were installed 76 mm apart,  with 
water-cooled jackets. The output from the transducers was converted to a voltage signal by a 
pressure transducer amplifier. The voltage was digitized and stored on a floppy disk. The pressure 
data file was later transferred to the main-frame computer. The pressure transducers were 
factory-calibrated, but were recalibrated frequently within _ 1% by discharging nitrogen gas at 
known pressure from the test section into the atmosphere. Limited adjustments of  the pressure 
transducer amplifier gain coefficient could be made. Factory recalibration was performed when 
necessary. 

A sheathed chromel-alumel thermocouple was used to measure the system temperature. Because 
the response time of  5 ms of  a 0.013 mm dia unsheathed thermocouple (the smallest commercially 
available) was of  the same order of  magnitude as the depressurization time, only the steady-state 
temperature was measured. 

The objective was to measure bubble growth rates on a vertical stainless-steel rod with a milled 
flat surface. Deionized and distilled water was used as the test liquid. The test vessel was washed 
with soap several times, soaked in chromic acid cleaning solution for a day and then flushed with 
distilled water. Before being installed in the test section, the rod was also washed with soap, put 
into chromic-acid cleaning solution for 1 h and then washed with distilled water. It was attached 
to a thin stainless-steel bar, clamped between the test vessel and the measurement section. The water 
in the test vessel was allowed to boil for 10-20 min in order to degas the system. The vent valve 
was then closed, and the 16 mm high-speed camera was focused carefully on the center of  the test 
surface. A n f  = 100 mm lens with a 50 mm extension tube was used to take pictures of  single bubble 
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Figure 3. Radius-time measurements of bubble 3010 (table 1) compared with the modified Jones-Zuber 
(1978) analysis [9]-[11] and Mikic e t  al. (1970) constant-pressure solution. [1]; Tf0f402K. [], R 
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Figure 4. Same as figure 3, except for bubble 3161; Tf0 = 409 K (Wang 1989). F1, R (experiment); 
R [10]; - - ,  R (Mikic et al. 1970); m, P. 

growth,  and a + 4 close-up lens was put on the f /2 .8  lens to pho tograph  a column of  bubbles. The 
test rod diameter, or, in some cases, the distance between two artificial holes on the test rod surface, 
was used as the reference scale. 

After the desired temperature (160°C) was reached, the oil bath was removed and the system 
was further pressurized by admitt ing nitrogen into the system, After switching on the pressure 
transducer amplifiers and the projection lights, the camera was started. After developing the film, 
the bubble diameters and heights were measured by projecting the image onto  a screen. The 
estimated error was +0.01 mm. 

R E S U L T S  A N D  D I S C U S S I O N  

After considerable preliminary calibration, about  five rolls o f  100-ft film were successfully taken 
for bubble growth measurements.  Tables 1 and 2 list measurements for typical bubbles. Other  
bubble measurements  are tabulated in Wang  (1989). The bubble shape, in general, is very nearly 
a truncated sphere with a fairly constant  apparent  contact  angle, fl, in the range 60°-75 °. The 
equivalent-volume truncated-sphere bubble radius, R, is tabulated along with the measured base 

2.5 0.18 

1.5 
E 
E 

ac 1.0 

0.5 

0.0 

' ~ ' ~IME '[ ms ]~ ' ~ ' 

0.16 

0.14 

0.12 

IR. 

Figure 5. Same as figure 3, except for bubble 3101; (table 2); Tfo =402 K. I-l, R (experiment); , R 
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Figure 6. Same as figure 3, except for bubble 3171; Tfo = 401 K (Wang 1989). [~, R (experiment); 
R [10]; - - ,  R (Mikic et al. 1970); II ,  p. 

diameter, D, and height, H, of the growing bubble. The stainless-steel surface is, in fact, well-wetted 
by the water. Hence the apparent contact angle is an artifact of the microlayer deposition process, 
since the water cannot be immediately displaced at the solid surface by the vapor. No bubbles were 
found in the bulk liquid or on the glass walls during the depressurization time period. It can be 
concluded that for these relatively low liquid temperatures and with the existence of partially- 
wetted surfaces, heterogeneous nucleation at the test surface, rather than homogeneous nucleation, 
dominates the boiling process. 

Bubble radii calculated from [9]-[1 l], are plotted in figures 3-7. Note the wide variations with 
time in system pressure, owing to acoustic reflections, and from bubble to bubble. Nevertheless, 
the predicted and measured radius-time curves are in agreement, within experimental error, with 
n o  adjustable constants. As expected, [1], since it was derived for constant vapor density and liquid 
superheat at the initiation of visible bubble growth, underestimates the bubble growth rate. It is 
again rather remarkable that the constant-pressure and variable-pressure curves are of similar 
shape, so that the displacement of the curves gives a measure of the effect of depressurization on 
increasing the bubble growth rate. Also, as shown by these figures, inertial effects, which slow down 
bubble growth, do not seem to be significant, since the predicted curves, which are based on purely 
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Figure 7. Same as figure 3, except for bubble 3103; Tr0 = 402 K (Wang 1989). l-I, R (experiment); 
R [10]; - - - ,  R (Mikic et al. 1970); m, P. 



436 z. WANG and S. G. BANKOFF 

thermally-controlled bubble growth, are in good agreement with the measured growth curves. This 
good agreement also provides important, albeit indirect, evidence for the importance of microlayer 
evaporation in bubble growth from solid surfaces. 

We show elsewhere (Wang & Bankoff 1991) that these results can be used to convert 
measurements of the rate of rise of the liquid level in the first few milliseconds to rates of effective 
bubble nucleation as function of time. Conversely, once the rates of effective bubble nucleation and 
growth are known in a rapidly-depressurizing vessel, one can estimate the rate of increase of 
average void fraction, and hence the rate of liquid level rise for very early times, while the bubbles 
are still attached to the walls. Once this period is over, as evidenced by bubble breakthrough from 
the free surface in the vessel, it is reasonable to assume that vapor-liquid equilibrium has been 
established. Hence drift-flux methods (Groimes 1983) can be used to estimate the subsequent rate 
of level rise and vapor flow away from the free surface. It is hoped that the same concepts would 
apply to flashing flows through nozzles and pipe breaks. 
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